10th Japanese-German Bridge Symposium in Munich

September 16. at the Technical University of Munich

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00</td>
<td>Registration, Get Together</td>
</tr>
<tr>
<td>09:10</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>10:00</td>
<td>Opening Ceremony</td>
</tr>
<tr>
<td>10:30</td>
<td>Keynote Lecture I</td>
</tr>
<tr>
<td>11:00</td>
<td>Recent Tendencies and Developments in Prestressed Concrete Bridges in Germany and Europe</td>
</tr>
<tr>
<td>11:30</td>
<td>Innovations for the Design of Concrete Bridges Developed at Vienna University of Technology</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch</td>
</tr>
<tr>
<td>13:00</td>
<td>Keynote Lecture II</td>
</tr>
<tr>
<td>13:30</td>
<td>Sustainability Assessment of Bridges - Recent German Research Results</td>
</tr>
<tr>
<td>14:00</td>
<td>Sustainability Assessment of Bridges - Life-Cycle Costs and External Effects</td>
</tr>
<tr>
<td>14:30</td>
<td>Effect of Fatigue on the Residual Prestress and Load Carrying Capacity of Prestressed Concrete Beams</td>
</tr>
<tr>
<td>15:00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>16:00</td>
<td>Keynote Lecture III</td>
</tr>
<tr>
<td>16:30</td>
<td>Assessment of Remaining Stress in Continuous Steel Girder Bridge with Fatigue Crack in Web Plate</td>
</tr>
<tr>
<td>16:30</td>
<td>Time-dependent deterioration and repair examples by self damage in pre-tensioned beams in Japan</td>
</tr>
<tr>
<td>17:30</td>
<td>Welcome Party, Reception, Cocktail Hour</td>
</tr>
</tbody>
</table>
Bridges and Bridge Design I

09:00 - 09:20
1. Assessment of the Shear Capacity of Existing Bridges - Short Term Solutions
2. The Tied Arch Bridge over the IJssel, The Netherlands
3. The Arch-Bridge over the IJssel, The Netherlands

09:20 - 09:40
1. Control of Distant Support Reactions of Railways Stiffened Bridge Using the Control-Sys-tem/Mass-Vector and Experimental Results of the Relevant Structural Tests
2. Assessment of residual load-carrying capacity of composite steel girder bridge with the connection damages of girder ends
3. Investigation of the local bearing behaviour of composite girder caps subjected to accidental loads due to impact on vehicle restraint systems

09:40 - 10:00
1. Development of new repair strengthening methods for existing concrete bridges
2. Long-term behavior of fiber-reinforced concrete
3. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges

10:00 - 10:20
1. Risk vs. Big Bridge – Dynamic Interaction of Equilibrating Plate of Bridge with the Bridge Superstructure
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges

10:20 - 10:40
1. The Beam-End Bridge - A Benchmark in Innovative Sustainable Design
2. Study on the Damage Processes of CFRP Box Beams with the Use of Image Analysis
3. Investigation of the Load Bearing Behaviour of Existing Bridge Caps Subjected to Long-Term Bearing Load

10:40 - 11:00
1. Dynamic Interaction of Equalizing Plates of Bridge with the Bridge Superstructure
2. Long-Term Behavior of Fiber-Reinforced Concrete
3. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges

11:00 - 11:20
1. Fatigue Life of Existing Bridges Using the Example of the Bussum Bridge
2. The Influence of the Pull-Out Effect on the Load-Bearing Behaviour of External Reinforcement
3. Fatigue life of existing bridges using the example of the Bussum bridge

11:20 - 11:40
1. Optimization of the Shear Capacity of Existing Bridges - A Benchmark in Innovative Sustainable Design
2. Steel-Cored Bridge Design, Example of the Kuafu Bridge
3. Fatigue life of existing bridges using the example of the Bussum bridge

11:40 - 12:00
1. The Influence of the Pull-Out Effect on the Load-Bearing Behaviour of External Reinforcement
2. Optimization of the Shear Capacity of Existing Bridges - A Benchmark in Innovative Sustainable Design
3. Steel-Cored Bridge Design, Example of the Kuafu Bridge

12:00 - 12:20
1. Long-Term Behavior of Fiber-Reinforced Concrete
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

12:20 - 12:40
1. Long-Term Behavior of Fiber-Reinforced Concrete
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

12:40 - 13:00
1. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
2. Fatigue life of existing bridges using the example of the Bussum bridge
3. Fatigue life of existing bridges using the example of the Bussum bridge

13:00 - 13:20
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

13:20 - 13:40
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

13:40 - 14:00
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

14:00 - 14:20
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

14:20 - 14:40
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

14:40 - 15:00
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

15:00 - 15:20
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

15:20 - 15:40
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

15:40 - 16:00
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

16:00 - 16:20
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

16:20 - 16:40
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

16:40 - 17:00
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

17:00 - 17:20
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

17:20 - 17:40
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

17:40 - 18:00
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

18:00 - 18:20
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

18:20 - 18:40
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

18:40 - 19:00
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

19:00 - 19:20
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

19:20 - 19:40
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge

19:40 - 20:00
1. Fatigue life of existing bridges using the example of the Bussum bridge
2. The Development of Innovative Methods of Corrosion Protection by Aluminum Magnesium Phospho Acid: Metal Spraying for Repair of Girder End Areas of Existing Steel Bridges
3. Fatigue life of existing bridges using the example of the Bussum bridge